The 6th KEK Topical Conference: Frontiers in Particle Physics and Cosmology

Tevatron results on Electroweak, Top and Higgs

Avto Kharchilava (State University of New York at Buffalo) for the CDF and DØ Collaborations

KEK, Tsukuba, Japan

February 2007

Outline

Introduction

- Tevatron, CDF and DØ

Electroweak measurements

- W and Z properties
- Di-boson production

Top physics

- Cross section, mass, charge
- Single top

Higgs searches

- The SM
 - ZH \rightarrow vvbb
 - WH \rightarrow evbb
 - $\bullet \ \mathsf{H} \to \mathsf{W}\mathsf{W}^* \to \ell^+ \ell^- _{\mathsf{V}\mathsf{V}}$
- SUSY
 - bh/bbh(→bb)
 - $h \rightarrow \tau \tau$
- Summary

W, Z, top, Higgs boson production rates at the Tevatron

- Cross sections for interesting processes are very small
 - Especially so when clean final states with low decay branching fractions are considered
- For example, an event with top production occurs just once in 10,000,000,000 interactions
- Multi-level trigger is the key in managing the huge rate of QCD background processes
- Capabilities to identify b-jets are essential to extract the top, Higgs, and other events with bquarks in final states

Accumulate luminosity as much as possible

Tevatron peak and integrated luminosities, Jan '07

Peak Luminosity

Delivered integrated luminosity ~2.4 fb⁻¹

- Data set has doubled every year
- Expect 4 8 fb⁻¹ by the end of 2009

Week #

1600.00 1200.00

2400.00

2000.00

800.00

400.00

The upgraded CDF II

- Major upgrades for Run II:
 - Drift chamber: COT
 - Silicon: SVX, ISL, L00 at r ~ 1.5 cm
 - 8 layers
 - 700 k readout channels
 - 6 m²
 - material:15% X₀
 - Forward calorimeters
 - Forward muon system
 - Improved central muon system
 - Time-of-flight
 - Preshower detector
 - Timing in EM calorimeter
 - Trigger and DAQ

The upgraded DØ detector in Run II

... and how it works

Run / event: 169261 / 6854840

Electroweak measurements

W and Z bosons

W and Z production cross section

~ 2%

luminosity?

W mass measurement: motivation

- m_W is a parameter of the SM must be measured as precisely as possible
- Higher order corrections due to heavy quark, Higgs and new particles

$$ho=rac{m_W^2}{m_Z^2(1-\sin^2 heta_W)}\equiv 1+\Delta r$$

$$\Delta r = rac{3G_F}{8\pi^2\sqrt{2}}m_t^2 + rac{\sqrt{2}G_F}{16\pi^2}m_W^2\left[rac{11}{3}\ln\left(rac{m_H^2}{m_W^2}
ight) + \ldots
ight] + \ldots$$

- Along with the top mass, $m_{\rm W}$ constrains the mass of the Higgs boson

W mass measurement techniques at the Tevatron

• W mass is related to the location of Jacobian edge

1. W transverese mass

$$m_T = \sqrt{2 p_T^{\ell} p_T^{\nu} (1 - \cos \phi_{\ell \nu})}$$

Insensitive to $p_T(W)$ to 1^{st} order Reconstruction of $p_T(v)$ is sensitive to hadronic response and multiply interactions 2. $p_T(\ell)$ fit: needs theoretical model for $p_T(W)$; provides cross-check of production model

3. $p_T(v)$ fit provides cross-check of hadronic recoil model

CDF: W mass systematic uncertainties and results

Transverse Mass Fit Uncertainties (MeV)

L _{int} ~ 200 pb ⁻¹			
	electrons	muons	common
W statistics	48	54	0
Lepton energy scale	30	17	17
Lepton resolution	9	3	-3
Recoil energy scale	9	9	9
Recoil energy resolution	7	7	7
Selection bias	3	1	0
Lepton removal	8	5	5
Backgrounds	8	9	0
pT(W) model (g2,g3)	3	3	3
Parton dist. Functions	11	11	11
QED rad. Corrections	11	12	11
Total systematic	39	27	26
Total	62	60	

Systematic uncertainties shown in green: statistics-limited by control data samples

- Combined electrons (3 fits): $M_W = 80477 \pm 62 \text{ MeV}$, $P(\chi^2) = 49\%$
- Combined muons (3 fits): $M_W = 80352 \pm 60 \text{ MeV}, P(\chi^2) = 69\%$
- All combined (6 fits): $M_W = 80413 \pm 48 \text{ MeV}, P(\chi^2) = 44\%$

W mass: new world average

	W mass (MeV)		
DELPHI	80336 ± 67		 •
L3	80270 ± 55	CDFI	80433 ± 79
OPAL	80416 ± 53	D0 I	80483 ± 84
ALEPH	80440 ± 51		
CDF-I	80433 ± 79	DELPHI	80336 ± 67
D0-I	80483 ± 84	13	80270 + 55
LEP Average	80376 ± 33		
Tevatron-I Average	80454 ± 59	OPAL	80416 ± 53
Previous World Average	80392 ± 29		80440 + 51
CDF-II (preliminary)	80413 ± 48	ALEFN	00440 ± 51
New Tevatron Average	80429 ± 39	CDF II	80413 ± 48
New World Average	80398 ± 25	80100 80200 80300	80400 80500 80600
5		W boson mass (M	MeV/c ²)

• The CDF Run II result is the most precise measurement to date

Impact on Higgs boson mass

Updated M_W vs M_{top}

 To match the current top mass precision of 2.1 GeV need the W mass accuracy of 15 MeV

Central value for m_H changed from 85 $^{+39}_{-28}$ GeV to 80 $^{+36}_{-26}$ GeV

(LEP EWWG preliminary)

Other electroweak measurements

- W/Z p_T and rapidity spectra, W charge asymmetry
 Constrain PDFs in particular
- $Z \rightarrow l^+ l^-$ forward-backward asymmetry, $Z \rightarrow \tau \tau$ (a reference for $h \rightarrow \tau \tau$ search)
- Di-boson production: Wγ, Zγ, WW, WZ
 - Probe non-Abelian nature of $SU(2)_L \otimes U(1)_Y$ gauge boson self-interactions

Source	Expectation \pm Stat \pm Syst \pm Lumi
Z+jets	$1.22 \pm 0.27 \pm 0.28 \pm$ -
ZZ	$0.89 \pm 0.01 \pm 0.09 \pm 0.05$
$Z\gamma$	$0.48 \pm 0.06 \pm 0.15 \pm 0.03$
$tar{t}$	$0.12 \pm 0.01 \pm 0.01 \pm 0.01$
WZ	$9.79 \pm 0.03 \pm 0.31 \pm 0.59$
Total Background	$2.70 \pm 0.28 \pm 0.33 \pm 0.09$
Total Expected	$12.50 \pm 0.28 \pm 0.46 \pm 0.68$
Observed	16

-inal data samp	le composition,	$L_{int} = 1.1 \text{ fb}^{-1}$
-----------------	-----------------	---------------------------------

Result:

 $\sigma(\mathit{WZ}) = 5.0^{+1.8}_{-1.6}~(\mathrm{stat.} + \mathrm{syst.})~\mathrm{pb}$

Consistent with the NLO prediction of 3.7±0.3 pb

Top physics

Motivation

- Heaviest elementary particle may hold a key for EW symmetry braking
- Unique opportunity to study bare quark since decays before hadronization

- Golden channel due to high yield and relative purity (after b-tag)
- Events with a lepton (e/µ), missing E_T, ≥ 3 jets and with at least 1 b-tagged jet are used for the cross section measurement

Di-lepton final states

- Signal to background ratio already good enough with ℓ + MET + ≥2 jets
- Even more pure sample with b-tagging

 $\sigma(t\bar{t}) = 8.6^{+1.9}_{-1.7}(stat) \pm 1.3(syst)pb$

tt cross section summary (few channels not up-to-date)

- Different channels and techniques all in agreement
- Precision at 14%. No CDF+DØ combined result as of yet

Tevatron goal: 10% uncertainty/experiment with 2 fb⁻¹

CDF: top mass in *l*+jets channel using ME method

- Matrix Element method
 - Calculate likelihood for each event using LO ME for tt and W+jets diff. cross section and parameterized parton showering
- Select events with ≥1 b-tag
 - Signal/Background = 4/1
- One unknown, three constraints
 Overconstrained
- Add jet energy scale as the 2nd unknown and fit for it
 - Obtain $\triangle JES = 0.99 \pm 0.02$
 - Consistent with a priori knowledge
 - Uncertainty only 2% !

Single most precise measurement:

 m_{top} = 170.9 ± 2.2 (stat+JES) ± 1.4 (sys) GeV

DØ: top mass in *l*+jets channel using ideogram method

Method

- Calculate a likelihood for each event based on kinematic fit that includes all possible jet assignments and probability that an event is signal or background
- Use b-tag information when available
- In situ calibration of JES using jets from W
- Selections
 - Lepton $p_T > 20$ GeV, MET > 20 GeV, ≥4jets with $p_T > 20$ GeV and $|\eta| < 2.5$

	electron+jets	muon+jets
no. of events observed in data	116	114
estimated sample composition:		
$t\bar{t}$	61.5 ± 8	45.6 ± 8
$W + ext{jets}$	35.6 ± 5	63.0 ± 8
QCD	18.9 ± 3	5.4 ± 1

 $m_{\rm t} = 173.7 \pm 4.4 \; ({\rm stat} + {\rm JES})^{+2.1}_{-2.0} \; ({\rm syst}) \; {\rm GeV}$

events per 5 GeV

Top mass in di-lepton final states

- Underconstrained system
 - 2 neutrinos, 18 kinematic quantities
 - 14 measured + 3 constraints
- Both experiments use (among others)
- ME technique
 - Calculate event-by-event signal probability curve (rather than single m_{rec}) using decay matrix element and transfer functions
- Neutrino weighting technique
 - Start by ignoring observed missing E_T , assume top mass and η for each v and extract v 4-momenta. Weight each solution

CDF's best result with ee, $e\mu$ and $\mu\mu$: m_{top}=164.5±3.9 (stat) ±3.9 (sys) GeV

DØ's resent with ee, eµ, µµ and ℓ +track: m_{top}= 178.1±6.7 (stat) ±4.8 (sys) GeV

Top mass summary (July 2006)

- Excellent results in each channel
- Combine CDF + D0, Run I + Run II
- Account for all correlations
- m_{top} = 171.4 + 2.1 GeV
- Uncertainty:

 $\delta m_{top}(stat) = \pm 1.2 \text{ GeV}$ $\delta m_{top}(JES) = \pm 1.4 \text{ GeV}$ $\delta m_{top}(syst) = \pm 1.0 \text{ GeV}$

- Contributing factors
 - ISR, FSR, bkgd evaluation, PDF, NLO effects, b-tagging
- Jet Energy Scale is the leading systematic in all channels

m_{top} determined to 1.2% !

Single top production: motivation

DØ: single top event selection

• Select events with isolated leptons, large missing $E_{\rm T}$ and jets

Signal acceptance and S/B ratio in lepton + jets sample

Percentage of single top tb+tqb selected events and S:B ratio (white squares = no plans to analyze)					
Electron + Muon	1 jet	2 jets	3 jets	4 jets	≥ 5 jets
0 tags	10% 1 : 3,200	25% 1 : 390	12% 1 : 300	<mark>3%</mark> 1 : 270	1% □ 1 : 230
1 tag	<mark>6%</mark> 1 : 100	21% 1 : 20	<mark>11%</mark> 1 : 25	<mark>3%</mark> 1 : 40	1% □ 1 : 53
2 tags		3% 1 : 11	2% 1 : 15	1% □ 1 : 38	0% □ 1:43

DØ: single top analysis strategy

Composition of lepton + jets sample with 1 or 2 b-tags

	Event Yields in 0.9 fb ⁻¹ Data Electron+muon, 1tag+2tags combined			
Source	2 jets	3 jets	4 jets	
tb	16 ± 3	8 ± 2	2 ± 1	
tqb	20 ± 4	12 ± 3	4 ± 1	
tī → #	39 ± 9	32 ± 7	11 ± 3	
<i>t</i> t̄ → /+jets	20 ± 5	103 ± 25	143 ± 33	
W+bb	261 ± 55	120 ± 24	35 ± 7	
W+cc	151 ± 31	85 ± 17	23 ± 5	
W+jj	119 ± 25	43 ± 9	12 ± 2	
Multijets	95 ± 19	77 ± 15	29 ± 6	
Total background	686 ± 131	460 ± 75	253 ± 42	
Data	697	455	246	

• Employ several multivariate analysis techniques to extract the signal

- Decision Trees, Matrix Elements method, Bayesian Neural Network

DØ: single top analysis (II)

Example: Decision Tree discriminant output (a-c) and the top mass spectrum (d)

DØ: single top results

- · All three techniques are in good agreement
- Evidence for the single top production with a significance of 3.4 standard deviations; the cross section 4.9 ± 1.4 pb
- This measurement is used to directly constrain (without assumption on CKM matrix unitarity) the |V_{tb}|:
 0.68 < |V_{tb}| ≤ 1.0 at 95% C.L.

DØ: top quark charge

- t \rightarrow Wb could mean top has charge 4/3
- Jet charge estimator

- b/c jet charge distributions derived from data → use them in simulations
- *l*+jet sample of double b-tag tt candidates
 - Use kinematic/mass constraint fit to pair lepton with the correct b jet
- Have two entries per event:

 $\begin{array}{l} Q_1 = |q_\ell + q_{b\ell}| & \leftarrow \text{ leptonic side of the evt} \\ Q_2 = |-q_\ell + q_{bh}| & \leftarrow \text{ hadronic side of the evt} \end{array}$

Exclude at 92% CL that the sample consist of only QQ pairs with charge |q| = 4e/3

Other active top topics (not discussed here)

- W helicity in top decays
 - SM: longitudinal fraction $f_0 = 0.7$, right-handed fraction $f_+ = 3.6 \times 10^{-4}$
 - Several methods: lepton p_T , M_{lb}^2 , $\cos\theta^*$
 - Results consistent with the SM prediction; still stat. limited
- BR(t \rightarrow Wb) / BR(W \rightarrow Wq)
 - 1.03 ^{+0.19} _{-0.17}
- Top quark lifetime

- cτ < 52.5 μm (~1.8×10⁻¹³ s) at 95% CL

- Search for tt resonances
 - m(X) > 725 GeV at 95% CL
- 4th generator t' quark
 - m(t') > 258 GeV at 95% CL
- Search for W' \rightarrow tb decays

 $- m(W'_L/W'_R) > 610/630 \text{ GeV} \text{ at } 95\% \text{ CL}$

Higgs searches

The SM Higgs boson decays

CDF: WH $\rightarrow \ell_V$ bb channel

- Lepton, missing E_T and 2 jets
 - One or two b-tags
- New since last year
 - NN b-tagger
 - Include double-tag
 - Include full 1 fb⁻¹ dataset
 - Luminosity equivalent gain
 - (S/√B)²=1.25²=1.6

 σ_{WH} < 3.9 - 1.3 pb for m_H= 110 - 150 GeV Measured limit/SM rate = 23 (m_H=115 GeV)

DØ: $H \rightarrow WW^* \rightarrow \ell^+ \ell^- \nu \nu$ decays; $\ell = e, \mu(1)$

- Event selection include
 - Isolated lepton
 - p_T(l₁) > 15 GeV, p_T(l₂) > 10 GeV
 - Missing $E_T > 20 \text{ GeV}$
 - Scaled missing $E_T > 15$ (suppress evts. with mismeasured jet energy)

 $E_T^{Sc} = \frac{E_T}{\sqrt{\sum_{jets} (\Delta E^{jet} \cdot \sin \theta^{jet} \cdot \cos \Delta \phi (jet, E_T))^2}}$ - Veto onData vs MC after ovt. preselection

- Z resonance
- Energetic jets
- Data correspond to integrated lumi. of 950-930 pb⁻¹ depending on the final states

DØ: $H \rightarrow WW^* \rightarrow \ell^+ \ell^- \nu \nu$ decays (2)

- Higgs mass reconstruction not possible due to two neutrions
- Employ spin correlations to suppress the bkgd.
 - > $\Delta \phi(\ell)$ variable is particularly useful

· Leptons from Higgs tend to be collinear

Good agreement between data and MC after all selections and in all final states

DØ: results on $H \rightarrow WW^*$

Expected/Observed # of events for $m_H = 160 \text{ GeV} (L \sim 950 \text{ pb}^{-1})$

	Data	Sum BGND	ww	W+jet/γ	Ζίγ *	tt(bar)	WZ I ZZ	QCD	H>₩₩*
e e	10	10.3 ± 0.6	7.0 ± 0.2	1.4 ± 0.6	0.0 ± 0.0	1.1±0.1	0.8 ± 0.1	0.06±0.02	0.415
eμ	18	24.4 ± 1.5	16.4 ± 0.1	5.3 ± 1.5	0.02 ± 0.01	2.1±0.1	0.6±0.1	0.1±0.05	0.97
μμ	9	9.8±0.8	6.6±0.1	1.0 ± 0.4	0.6 ± 0.4	0.5 ± 0.1	0.5 ± 0.1	0.6±0.6	0.35

- If m_H= 160 GeV then might have a couple of Higgses in our sample already !
- SM only a factor 4 away
- 4th generation models with m_H=150-185 GeV excluded

Limits from CDF and DØ

Analysis	CDF , M _H = 115 GeV	DØ , M _H = 115 GeV
	(factor above SM)	(factor above SM)
$ZH \rightarrow vvbb$	Includes WH w/ miss { (14)	3.4 pb (41)
$WH \rightarrow \ell Vbb$	3.4 pb (23)	2.4 pb (16)
ZH → ℓℓbb	2.2 pb (27)	6.1 pb (75)

Limits from CDF and DØ combined

Searches for SUSY Higgs bosons

- In MSSM have two Higgs doublet fields
 - H_u (H_d) couple to up- (down-) type fermions
 - The ratio of their VEV's
 - $\tan\beta = \langle H_u \rangle / \langle H_d \rangle$
 - 5 Higgs particles after EWSB
 h, H, A, H⁺, H⁻
 - h is "guaranteed" to be light
 m_h <~ 130-140 GeV
- At large tanβ, coupling to down-type quarks, i.e. b's, is enhanced wrt SM
 - At tree level ~ tanβ → production cross section rise as tanβ²
- CP conservation is assumed in the following analyses

Loop level corrections to x-section and BR

MSSM higgs searches: CDF and DØ published results

Associated production with b quarks

- DØ: bh/bbh(\rightarrow bb) \rightarrow 3/4 b's in final states 100
 - Require ≥ 3 b-tagged jets
 - Background evaluated from data
 - Look for excess in di-jet mass window

Inclusive production

- CDF and DØ: $h \rightarrow \tau\tau \rightarrow e\tau_h$, $\mu\tau_h$, or $e\mu$
 - Look for excess in m_{vis} (= mass of visible τ decay products and missing E_T) spectrum

h $\rightarrow \tau \tau$: CDF preliminary with 1 fb⁻¹

Summary

- Upgraded for Run II Tevatron, CDF and DØ are performing well and contribute to world class physics at the energy frontier
- Most of Run I Electroweak measurements are improved and new processes are established, such as di-boson production
 - Good agreement with the SM so far
- Both experiments are in the era of precision top quark measurements
 - Many results are now systematics limited that will improve with more data
- In coming years, the CDF and DØ concerted efforts will offer a real opportunity to find the SM, or non-SM, Higgs boson or exclude a very interesting low-mass region
- Tevatron will bring more order to many scenarios before the LHC start up !