

Rare B Decays

Adrian Bevan*

KEK Topical Conference 6 (Feb 6th-8th 2007)

> Note: L. Silvestrini is giving a theory talk on this subject on Thursday.

*From the BaBar Collaboration

Overview

- General Motivation
- The KEK-B/PEP-II and the Belle/BaBar detectors
- Results
 - (Semi-)Leptonic and radiative rare B decays
 - $B \rightarrow I \upsilon$,
 - B→K*II
 - $B \rightarrow d\gamma$ transitions
 - Hadronic charmless rare B decays
 - Κ*ρ
 - a₁ρ
 - ρπ
 - Searches for direct CP violation
- Summary

General Motivation

General Motivation

KEK-B/PEP-II

- Asymmetric energy e⁺e⁻ collider
- Study decay of B meson pairs.

- Record data at the Y(4S) ~90% of the time.
- Run below the bb production threshold for background studies.

BaBar and Belle detectors

 BaBar recently upgraded its muon system and DCH electronics.

> Very similar detectors. Main difference is PID: Belle: Aerogel Cherenkov & ToF BaBar: DIRC

IFR upgrade to LSTs

Bottom & top LST sextants installed summer 2004. Remaining LST sextants installed autumn 2006. The fully upgraded LST system recorded its first cosmic rays November 2006

KEKCT '07

Adrian Bevan

Integrated luminosity

- B-factories have recorded over 10⁹ B-pairs
- Dataset will double by the end of the program.

Adrian Bevan

BaBar is taking data again

This event display shows the first fully reconstructed B decay of run 6.

 $B^0 \rightarrow D^- \pi^+$

The grey hits are from the other B in the event.

RESULTS

(Semi-)Leptonic and radiative rare B decays
 B → Iυ
 B → K*II
 B → dγ

$$B^+ \rightarrow \tau^+ \nu$$

Within the SM, this measurement can be used to constrain f_B.

Adrian Bevan

- Can constrain the apex of the unitarity triangle using this measurement
 - Complements the angle measurements
 - (Y.J. Kwon's talk this morning)

$$B^+ \rightarrow \tau^+ \nu$$

- Within the SM, this measurement can be used to constrain f_B.
- Can replace W⁺ with H⁺
 - \mathcal{B} can be suppressed or enhanced by a factor of r_{H}

$$r_H = \left(1 - \frac{m_B^2}{m_H^2} \tan^2\beta\right)^2$$

2HDM: W.S. Hou, PRD 48, 2342 (1993).

$B^+ \rightarrow \tau^+ \nu$

hep-ex/0608019 PRL**97** (2006) 251802

Constraints from $B^+ \rightarrow \tau^+ \nu$ hep-ex/0608019 PRL97 (2006) 251802 e.g. the 2HDM of W.S. Hou, PRD 48, 2342 (1993). SM prediction can be 300 enhanced/reduced by a factor \mathbf{r}_{H} : $r_{H} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2}\beta\right)^{2}$ Belle 417100 BB (95.5% C.L.) 250 H[±] Mass (GeV/c²) 000 Tevatron Run I 100 Excluded (95% C.L.) SM expectation LEP Excluded (95% C.L.) 50 (1.59±0.4)×10⁻⁴ 80 100 20 40 60 0 tan β 1.36 ± 0.48 **KEKCT '07** 14 $BF(B^+ \rightarrow \tau^+ \nu_{\tau})$ Adrian Bevan

$$B^+ \rightarrow e^+ v, \ \mu^+ v$$

hep-ex/0607110 hep-ex/0611045

BaBar: 229×10^6 B pairs Belle: 277×10^6 B pairs

Same physics motivation as $\tau^+ v$. $\mathcal{B}_{SM}(B^+ \to l^+ v_l) = \frac{G_F^2 m_B m_l^2}{8\pi} \left(1 - \frac{m_l^2}{m_B^2}\right) f_B^2 |V_{ub}|^2 \tau_B$

- These searches give null results. Upper limits are shown for BaBar and Belle.
- Consistent with SM.
- Best limits within a factor of 2 of SM

 $\mathcal{B}(B^{+} \to e^{+}\upsilon_{e}) < 7.9 \times 10^{-6} (90\% \text{ CL})$ $\mathcal{B}(B^{+} \to e^{+}\upsilon_{e}) < 9.8 \times 10^{-7} (90\% \text{ CL})$ $\mathcal{B}(B^{+} \to \mu^{+}\upsilon_{\mu}) < 6.2 \times 10^{-6} (90\% \text{ CL})$ $\mathcal{B}(B^{+} \to \mu^{+}\upsilon_{\mu}) < 1.7 \times 10^{-6} (90\% \text{ CL})$

$$B \rightarrow K^{(*)} \parallel$$

F. Kruger, et al. PRD61 114028 (2000), Erraturm D63 019901 (2001); F. Kruger, E. Lunghi PRD 63 014013 (2001); G. Hiller & F. Kruger PRD63 014013 (2001); Q. Yan et al PRD62 094023 (2000). etc.

- Flavor Changing Neutral Current, sensitive to NP in loops.

- R_{κ} can be enhanced for Higgs doublet models with large tan β .
- The forward backward asymmetry A_{FR} in the differential decay rate g, has a SM distribution as a function of q^2 , deviations from this indicate NP. $\mathcal{A}_{FB}(q^2) = \frac{\int_{-1}^{1} \operatorname{sgn}(\cos\theta) g(q^2,\theta) d\cos\theta}{\int_{-1}^{1} g(q^2,\theta) d\cos\theta}.$
 - θ is the angle between the lepton (+/–) momentum and B (B/B) in the dilepton rest frame

$B \rightarrow K^{(*)} II$

Figures from PRD73 (2006) 092001

- Shape of A_{FB}(q²) can be used to test SM
 - measure effective parameters related to Wilson coefficients C_i.
 - $-\gamma$ electroweak penguin
 - Z⁰ electroweak penguin
 - box diagram
- K^{*}II has F_L(q²)

 $\begin{array}{c} C_7\\ C_9\\ C_{10} \end{array}$

- F_L=fraction of longitudinally polarised events.
- Deviations from SM expectations can signal right handed currents.

A. Ali et al. PRD**66** 034002 (2002); PRD**61** 074024 (200); F. Kruger & J. Matias PRD71 094009 (2005).

KEKCT '07

$B \rightarrow K^{(*)} \parallel$

 These modes have the smallest measured branching fraction of any observed B decay.

$B \rightarrow K^{(*)} \parallel$

PRL**96** (2006) 251801 PRD**73** (2006) 092001

First A_{FB} measurements from the B-factories are compatible with SM. 0.8 b) A_{FB} (bkg-sub) 0.6 1 0.4 0.2 0.5 A_{FB} ~57 events 0 -0.2 -0.4 -0.5 -0.6 Limit on first q² at 95% CL. ~114 events -0.8 -1 8 10 12 14 16 18 20 $q^{2}(\text{GeV}^{2}/c^{4})$ 0 2 4 6 18 12 14 16 20 0 2 6 8 10 q^2 GeV²/c² C_i could be complex BSM: should test this in the future. A. Hovhannisvan et al. hep-ph/0701046, A. Cornell et al. hep-ph/0505136 1.4 Also measured F₁ to be a) 1.2 compatible with SM -- 0.8 L 0.6 BaBar: 229×10⁶ B pairs 0.4 Belle: 386×10⁶ B pairs 0.2

KEKCT '07

Adrian Beva

0

14 16 18 20

10 12

 $q^{2}(\text{GeV}^{2}/c^{4})$

6

8

B \rightarrow dy transitions: $\omega\gamma$, $\rho\gamma$

Radiative penguin $\underbrace{\stackrel{b}{\longrightarrow} V_{tb}}_{V_{tb}} \underbrace{\stackrel{f}{\longrightarrow} V_{td}}_{W} \underbrace{\stackrel{f}{\longrightarrow} V_{td}}_{ub} \underbrace{\stackrel{b}{\longrightarrow} V_{ud}}_{ub} \underbrace{\stackrel{f}{\longrightarrow} V_{ud}}_{ub} \underbrace{\stackrel{f}{\longrightarrow} V_{ud}}_{ub} \underbrace{\stackrel{f}{\longrightarrow} V_{ud}}_{ud} \underbrace{\stackrel{f}{\longrightarrow} V_{ud}}_{ub} \underbrace{\stackrel{f}{\longrightarrow} V_{ud}}_{ud} \underbrace{\stackrel{f}$

 B^0 and B^{\pm} decays

• The ratio of $d\gamma/K^*\gamma$ measures $|V_{td}/V_{ts}|$.

$$\frac{\mathcal{B}[B \to (\rho/\omega)\gamma]}{\mathcal{B}(B \to K^*\gamma)} = \left|\frac{V_{td}}{V_{ts}}\right|^2 \left(\frac{1 - m_\rho^2/M_B^2}{1 - m_{K^*}^2/M_B^2}\right)^3 \underbrace{\zeta^2[1 + \Delta R]}_{\text{Ratio of form factors}}.$$

- Any inconsistency between this and the constraint from $\Delta m_d / \Delta m_s$ would indicate new physics.
 - CDF measure |V_{td}/V_{ts}|=0.2060±0.0007 (exp) ±0.007 (th)

CDF Collaboration hep-ex/0609040

B \rightarrow dy transitions: $\omega\gamma$, $\rho\gamma$ RPL96 (2006) 221601 hep-ex/0612017

B \rightarrow dy transitions: $\omega\gamma$, $\rho\gamma$

- Can constrain the unitarity triangle using $B \rightarrow K^* \gamma$
 - Orthogonal to constraint from $B^+ \rightarrow \tau^+ \upsilon$
 - Compliments angle measurements (Y.J. Kwon's talk this morning)

KEKCT '07

Adrian Bevan

RESULTS

Charmless hadronic rare B decays.
 B→K*ρ
 B⁰→a₁ρ
 B⁺→ρ⁺π⁰
 Direct CP Violation searches

$B \rightarrow VV$ decays

Integrate over Φ ...

KEKCT '07

Adrian Bevan

$B \rightarrow VV$ decays

- 11 observables
 - 6 amplitudes, A₀, A₊₁, A₋₁ + C.C.
 - 5 phases
- Simplify analysis to separating transverse and longitudinal events when have low statistics.
 - Measure polarisation: f_L
- Analogous to B→K*II and H→ZZ→I⁺I⁻I⁺I⁻

$$\frac{d^{3}\Gamma}{d\cos\theta_{1}d\cos\theta_{2}} \propto \left\{ f_{L}\cos^{2}\theta_{1}\cos^{2}\theta_{2} + \frac{1}{4}(1-f_{L})\sin^{2}\theta_{1}\sin^{2}\theta_{2} \right\}$$

$$f_L = \frac{|A_0|^2}{\sum_{m=-1,0,1} |A_m|^2}$$

.... to simplify the angular correlation.

KEKCT '07

PRL97 (2006) 201801

 $B \rightarrow K^* \rho$

- 232×10⁶ B Pairs
- BF~few 10⁻⁶.
- 2 VV modes and f₀K^{*+} have been observed.
- Understanding nonresonant Kπ background is critical for these analyses.

Adrian Bevan

$B \rightarrow K^* \rho$

PRL**97** (2006) 201801

- For penguins we expect f_L~0.5, trees we expect f_L~1.0.
- The interest is in trying to understand the underlying dynamics of these decays.

Mode	n_{sig}	$S(\sigma)$	$\mathcal{B}(10^{-6})$	f_L	$\mathcal{A}_{ ext{CP}}$
$\rho^{0}K^{*+}$		2.5	$3.6^{+1.7}_{-1.6} \pm 0.8 \ (6.1)$	$[0.9 \pm 0.2]$	_
$\rightarrow \rho^0 K^* {}^+_{K^+ \pi^0}$	19^{+16}_{-15}	1.3	$3.2^{+2.7}_{-2.4} \pm 0.9$	$[0.8^{+0.3}_{-0.5}]$	_
$\rightarrow \rho^0 K^* K^0_{K^0_S \pi^+}$	32^{+19}_{-17}	2.1	$3.8^{+2.2}_{-2.1} \pm 0.9$	$[1.0 \pm 0.3]$	
$\rho^{+}K^{*0}$	194 ± 29	7.1	$9.6 \pm 1.7 \pm 1.5$	$0.52 \pm 0.10 \pm 0.04$	$-0.01 \pm 0.16 \pm 0.02$
$\rho^{-}K^{*}{}^{+}_{K^{+}\pi^{0}}$	60^{+25}_{-22}	1.6	$5.4^{+3.8}_{-3.4} \pm 1.6 \ (12.0)$	$\left[-0.18^{+0.52}_{-1.74}\right]$	—
$\rho^{0}K^{*0}$	185 ± 30	5.3	$5.6 \pm 0.9 \pm 1.3$	$0.57 \pm 0.09 \pm 0.08$	$0.09 \pm 0.19 \pm 0.02$
$f_0(980)K^{*+}$		5.0	$5.2 \pm 1.2 \pm 0.5$		$-0.34 \pm 0.21 \pm 0.03$
$\rightarrow f_0(980) K^{*+}_{K^+\pi^0}$	40^{+13}_{-12}	3.8	$6.2^{+2.1}_{-1.9} \pm 0.7$	_	$-0.50 \pm 0.29 \pm 0.03$
$\rightarrow f_0(980) K^{*+}_{K^0_S \pi^+}$	37^{+14}_{-12}	3.2	$4.2^{+1.5}_{-1.4} \pm 0.5$		$-0.13 \pm 0.30 \pm 0.01$
$f_0(980)K^{*0}$	83 ± 19	3.5	$2.6 \pm 0.6 \pm 0.9 \ (4.3)$	—	$-0.17 \pm 0.28 \pm 0.02$

27

B⁺→K^{*0}ρ⁺/ a_1 ρ & α from ρρ PRL97 (2006) 201801 PRD74 (2006) 031104

 B⁺→K^{*0}ρ⁺ is a pure penguin decay that can be related to the penguin amplitude in B⁰→ρ⁺ρ⁻.

Beneke et al., Phys.Lett. B638 (2006) 68-73

 $\mathcal{B}(B^+ \to K^{*0}\rho^+) = (9.6 \pm 1.7 \pm 1.5) \times 10^{-6}$

•This approach gives a more precise measurement of the unitarity triangle angle than traditional methods.

$\sigma(\alpha) \sim 7^{\circ}(\text{expt.}) \pm 1.5^{\circ}(\text{th.})$

- $a_1 \rho$ is a significant background to other rare decays like $\rho \rho$.
- Recent search provides useful upper limit on this decay.

$$\mathcal{B}(B^0 \to a_1^{\pm} \rho^{\mp}) < 61 \times 10^{-6} (90\% \text{ CL})$$

$B^+ \rightarrow \rho^+ \pi^0$

Recently updated by BaBar using 227×10⁶ B pairs

Useful input for an isospin analysis of B→ρπ decays.
Can also search for direct CP violation in this mode:

$$\mathcal{A}_{CP} = \frac{\overline{N} - N}{\overline{N} + N}$$

 $B(B^+ \to \rho^+ \pi^0) = (10.2 \pm 1.4 \pm 0.9) \times 10^{-6}$ $\mathcal{A}_{CP} = -0.01 \pm 0.13 \pm 0.02$

Searches for direct CP violation

+1.0 CLEO Belle BABAR CDF PDG2006 New Avg. 0.0 -1.0 HFAG AUGUST 2006 HFAG AUG

CP Asymmetry in Charmless B Decays

CP Asymmetry in Charmless B Decays

 There is a huge effort from the B-factories in trying to observe direct CP violation.
 Two signals observed so far in B⁰→π⁺π⁻ and K⁺π⁻ (Y.J. Kwon's talk this morning)

Summary

- Rare B decays provide a useful testing ground for theoretical calculations.
 - Loop dominated can also be used to constrain possible physics contributions beyond the standard model.
 - Provide constraints of the unitarity triangle that compliment the angle and mixing measurements.
 - $B^+ \rightarrow K^{*0}\rho^+$ can be used to constrain theoretical uncertainty in the determination of α .
- The B-factories have recorded 1ab⁻¹ of data and will double this by the end of 2008.
 - More stringent bounds on the triangle and NP model parameter space to come.