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Introduction
• Experimental setup
• Physics goals
• Neutrino beam
• Near and Far detectors
• Muon neutrino disappearance analysis

– Results
– Future sensitivity

• Neutrino Time-Of-Flight analysis
• Sensitivity to sub-dominant neutrino

oscillations – θ13
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The MINOS Collaboration

Argonne • Athens • Benedictine • Brookhaven • Caltech • Cambridge • Campinas • Fermilab
College de France • Harvard • IIT • Indiana • ITEP-Moscow • Lebedev • Livermore

Minnesota-Twin Cities • Minnesota-Duluth • Oxford • Pittsburgh • Protvino • Rutherford
Sao Paulo • South Carolina • Stanford • Sussex • Texas A&M

Texas-Austin • Tufts • UCL • Western Washington • William & Mary • Wisconsin

32 institutions
175 scientists
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MINOS Overview
• Main Injector Neutrino

Oscillation Search

• Neutrinos at the Main Injector
(NuMI) beam at Fermilab

• Two detectors:

• Near  detector at Fermilab
– measure beam composition
– energy spectrum

• Far  detector in Minnesota
– search for evidence of

oscillations 735 km
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MINOS Physics Goals
• Test the νµ→ντ oscillation

hypothesis
– Measure precisely |Δm2

32| and
sin22θ23

• Search for sub-dominant νµ→
νe oscillations

• Search for/constrain exotic
phenomena

• Compare ν, ν oscillations

• Atmospheric neutrino
oscillations

– Phys. Rev. D73, 072002 (2006)

ν1

ν2

ν3
Δm2

32 = m3
2 – m2

2

νµ disappearance

νe appearance
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Neutrino Beam (NuMI)

• Protons strike target
• 2 magnetic horns focus

secondary π/K
• decay of π/K produces

neutrinos
• variable beam energy
• short pulse: ~10 µs

Low
Med.
High



MINOS
Detectors

Far Detector

Near Detector

• Massive
– 1 kt Near detector
– 5.4 kt Far detector

• Similar as possible
– steel planes

• 2.5 cm thick
– scintillator strips

• 1 cm thick
• 4 cm wide

– Wavelength shifting
fibre optic readout

– Multi-anode PMTs
– Magnetised (~1.3 T)
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MINOS Event Topologies

νµ CC Event NC Event νe CC Event

•long µ track+ hadronic activity
at vertex

• short, with typical
EM shower profile• short event, often diffuse

3.5m 1.8m 2.3m

Monte Carlo



Muon Neutrino Disappearance
Analysis



Jeff Hartnell, KEKTC6 10

1

2

spectrum ratio

Monte Carlo

Experimental Approach
• Two detector experiment to reduce systematic errors:

– Flux, cross-section and detector uncertainties minimised
– Measure unoscillated νµ spectrum at Near detector

• extrapolate
– Compare to measured spectrum at Far detector

Unoscillated

Oscillated

Monte Carlo

  νµ spectrum

)/267.1(sin2sin1)( 222
ELmP !"=# $%% µµ

1 2
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Event Classification
• Separate 2 event types:

– Charged Current νµ

(oscillations cause deficit)
– Neutral Current (all active

neutrinos = no change)
• Event classification

parameter
– likelihood-based
– 3 Probability Density

Functions
• Track length
• Pulse height fraction in track
• Pulse height per plane

Event Classification Parameter

Near Detector
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Tuning the
beam MC

• 6 beam
configurations

• Use Near
detector data

• Fit to a model
of hadron
production

• Reweight MC
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Near to Far Extrapolation
• Far detector spectrum != Near detector

– Project different solid angles
–  π/K decay kinematics

• average neutrino energy varies with angle

FD

Decay Pipe

π+
Target

ND

p

Eν ~ 0.43Eπ / (1+γπ2θν2)

• Extrapolate Near detector spectrum
– using knowledge of beam line geometry and π

/K decay kinematics
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|Δm2
32| = 2.74 ± 0.28 x 10-3 eV2

MINOS Best-fit Spectrum
• Data from first year:

1.27x1020 POT
• Exclude no oscillations

at 6.2σ (rate only, <10 GeV)

• Best fit oscillation
parameters:

• Constraining the fit to
sin2(2θ23) = 1 yields:

|Δm2
32| = 2.74 +0.44 (stat + syst) x 10-3 eV2

sin22θ23 = 1.00 -0.13 (stat + syst)
− 0.26
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Allowed Region
• Consistent with

previous
experiments

• Already
competitive in
measurement
of |Δm2

32|

• Phys.Rev.Lett.97:191801,2006
• PRD to be published
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MC MINOS
MC

MINOS Predicted Sensitivity

• Sensitivity for
different POT

• Evaluated at
current best fit
point

• Contours are 90%
C.L. statistical
errors only



Quiz Question
on Jeopardy

(US Quiz Show)
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Photo by Jeff Nelson
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Neutrino Time-Of-Flight (NEW!)
• GPS synchronises

two detectors
• Know distance

between detectors
precisely:
– 734,298.6 +/- 0.7 m
– ~2.5 ms at c

• Measure
distribution of event
times in two
detectors

• Loglikelihood fit to
time distribution
allowing δt to vary

Far detector events = points
Near detector prediction= solid line
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Time-Of-Flight Result (NEW!)

• MINOS T.O.F.:
– 2449223 +/- 84 (stat.) +/- 164 (syst.) ns @ 99% C.L.

• Nominal T.O.F.:
– 2449356 ns (@ c)

• In terms of velocity:
• (v-c)/c = (5.4 +/- 7.5) x 10-5 (99% C.L.)

• Previous experiment had baseline of ~500 m
with timing precision of ~ns, gave result of:

• |v-c|/c < 4 x 10-5 (95% C.L.)



Search for sub-dominant
neutrino oscillations
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νµ → νe Oscillation Search
• Sub-dominant neutrino oscillations

– Look for νe appearance
– P(νµ→νe) ≈ sin2θ23 sin22θ13 sin2(1.27Δm2

31L/E)
• plus CPv and matter effects

• Look for events with compact shower and typical
EM profile
– MINOS optimised for νµ

–  νe signal selection is harder
• Steel thickness 2.54cm = 1.44X0
• Strip width 4.1cm ~ Molière radius (3.7cm)

– Primary background from NC events, also
• beam νe, high-y νµ CC, oscillated ντ in FD

• However, first indication of non-zero θ13 possible



Jeff Hartnell, KEKTC6 23

Sensitivity to θ13 (4x1020 POT)

• Can improve on current
best limit from CHOOZ

– Matter effects can
change νe yield by ±20%

– Reach depends strongly
on POT

– With 16x1020 POT can
make significant
improvements to world’s
best limit and increase
chance of discovery!

Monte Carlo
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Sensitivity to θ13 (16x1020 POT)

Dashed lines = 90% C.L.

Solid lines = 3σ

Analysis underway...

Monte Carlo
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Conclusions
• MINOS: long-baseline neutrino oscillation experiment

– NuMI neutrino beam at Fermilab
– Two massive detectors

• Analysis of 1st year of beam data (1.27x1020 POT):
– Exclude no oscillations at 6.2σ (rate only, <10 GeV)
– Results:

• Constraining the fit to sin2(2θ23) = 1 yields:

• Time-of-flight measurement:
                      (v-c)/c = (5.4 +/- 7.5) x 10-5 @ 99% C.L.

• Sensitivity to θ13 – improve on Chooz
• Updated Δm2 measurement this summer...

... and MUCH MORE TO COME

|Δm2
32| = 2.74 ± 0.28 x 10-3 eV2

|Δm2
32| = 2.74 +0.44 (stat + syst) x 10-3 eV2

sin22θ23 = 1.00 -0.13 (stat + syst)
− 0.26
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Backup slides
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MINOS νµ-CC Event Selection
• Fiducial Cuts (near and far)
• Select µ- tracks (νµ)
• CC/NC classification cuts

• Far detector specific cuts to remove
cosmic ray and light injection contamination

• Far detector data was blinded,
all cuts developed & tuned with MC
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MINOS νµ-CC Event Selection

Face On

•Event contains at least one reconstructed
track

•Reconstructed vertex is within fiducial
volume

•Near: 1 < z < 5 m, r < 1 m from beam
center

•Far: 0.5 < z < 14.3 m or 16.2 < z < 28.0 m,
r < 3.7 m
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Far Detector Beam Data Selection

Face On

•FD data selected based on position,
direction and timing information

•Cosine of angle between track
direction and beam direction > 0.6

•Events have -20 < t < 30 μs (GPS)

•Cosmic ray background estimated
using sidebands, <0.5 events

•215 νµ CC events
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y = Eshw/(Eshw+Pµ)

Muon Momentum (GeV/c) Shower Energy (GeV)

Physics Distributions
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Systematic Uncertainties
• Neutral Currents

– Look at PID in near
detector vs energy

– Large uncertainty in
low energy NC cross
sections

–  δ(NC contamination): 50%
• Intranuclear Rescattering

– Models for pion energy loss
in nucleus vary

– Hadron formation zone affects
visible energy in ν CC event

–  δ(Hadron Energy Scale)=11% M
.K

or
do

sk
y,

 N
uI

N
T0

5
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Summary of Systematic Uncertainties

•Size of uncertainties are obtained by doing MC studies

•Make a set of fake data but shifted by the values in the table, fit fake data

•Table shows shift in the oscillation parameters

•3 largest uncertainties included in oscillation fit as nuisance parameters

0.0110.044All other systematic uncertainties
0.070.13Total systematic (summed in quadrature)

0.0500.090NC contamination ±50%

0.120.36Statistical error (data)

0.0480.060Absolute hadronic energy scale ±11%
0.0050.050Near/Far normalization ±4%

Shift in
sin22θ

Shift in Δm2

(10-3 eV2)
Preliminary Uncertainty



Jeff Hartnell, KEKTC6 34

Observed vs. Expected

0.45±0.06168.4±8.876νµ (<5 GeV)

0.51±0.05238.7±10.7122νµ (<10 GeV)

0.64±0.05336.0±14.4215νµ (<30 GeV)

Data/MC
(Matrix Method)

Expected
(Matrix Method;

Unoscillated)

FD
DataData Sample

• Below 10 GeV a 49% deficit is observed
• Significance is 6.2σ (stat+syst)
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MINOS Calibration System
• Calibration of

ND, FD Response:
• LED-based Light

Injection system
– Track PMT gains

• Cosmic Ray Muons
– Remove variations

along and between
strips

– Stopping muons for
detector-detector
calibration

• Overall energy scale:
– Test-beam with mini-

MINOS detector
– Measured e/µ/π/p

response

Energy resolution:
 (E in GeV)
 Hadrons: 

 56% / √E ⊕ 2%    
 Electrons:

  21% / √ E ⊕ 4% / E 
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Backup: MINOS
νe Signal / Background

• Goal: must distinguish between EM and hadronic shower energy
• Several discriminating techniques have been tried to enhance

signal/background separation
– Cuts, Multivariate Discriminant Analysis, ANN, Image recognition

Neural Net example
 Oscillation parameters:

sin2(2θ13) = 0.1
|Δm32|2 = 2.7×10-3eV2

sin2(2θ23) = 1
 POT = 16x1020

 Oscillated νe are shown in
black

 Cutting at 0.8:
 νe purity ~ 30%
 Signal/√Background = 3.8

58.0

Total

29.14.78.739.05.6

νe
oscντ CCνe

beamNCνµ CC

MINOS Preliminary
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Backup:  Study MINOS
νe Background with Data

• Several techniques developed to
measure backgrounds in ND:

• Muon removal from CC events to
estimate NC contribution

– Assumes similar hadron
multiplicities/shower topologies

– Requires some corrections from MC

• Using horn off data to resolve NC, νµ

CC background components
– During horn off running, pions are no longer

focused and energy spectrum peak
disappears

– Running event selection on horn-off data
enhances NC component of background
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