# MINOS Results and Future Prospects

## Jeff Hartnell Rutherford Appleton Laboratory, UK

(on behalf of the MINOS Collaboration)

Presented 6<sup>th</sup> February 2007 at

The 6th KEK Topical Conference:
Frontiers in Particle Physics and Cosmology (KEKTC6)





### Introduction

- Experimental setup
- Physics goals
- Neutrino beam
- Near and Far detectors
- Muon neutrino disappearance analysis
  - Results
  - Future sensitivity
- Neutrino Time-Of-Flight analysis
- Sensitivity to sub-dominant neutrino oscillations  $\theta_{13}$

### The MINOS Collaboration





32 institutions 175 scientists

Argonne • Athens • Benedictine • Brookhaven • Caltech • Cambridge • Campinas • Fermilab College de France • Harvard • IIT • Indiana • ITEP-Moscow • Lebedev • Livermore Minnesota-Twin Cities • Minnesota-Duluth • Oxford • Pittsburgh • Protvino • Rutherford Sao Paulo • South Carolina • Stanford • Sussex • Texas A&M Texas-Austin • Tufts • UCL • Western Washington • William & Mary • Wisconsin

### **MINOS** Overview

- Main Injector Neutrino Oscillation Search
- Neutrinos at the Main Injector (NuMI) beam at Fermilab
- Two detectors:
- Near detector at Fermilab
  - measure beam composition
  - energy spectrum
- Far detector in Minnesota
  - search for evidence of oscillations





## MINOS Physics Goals

- Test the  $v_{\mu} \rightarrow v_{\tau}$  oscillation hypothesis
  - Measure precisely  $|\Delta m^2_{32}|$  and  $\sin^2 2\theta_{23}$
- Search for/constrain exotic phenomena
- Compare v,  $\nabla$  oscillations
- Atmospheric neutrino oscillations
  - Phys. Rev. D73, 072002 (2006)



$$v_3$$
 $v_2$ 
 $v_3$ 
 $v_4$ 
 $\Delta m^2_{32} = m_3^2 - m_2^2$ 

## Neutrino Beam (NuMI)



- Protons strike target
- 2 magnetic horns focus secondary π/K
- decay of π/K produces neutrinos
- variable beam energy
- short pulse: ~10 μs





### MINOS Detectors

- Massive
  - 1 kt Near detector
  - 5.4 kt Far detector
- Similar as possible
  - steel planes
    - 2.5 cm thick
  - scintillator strips
    - 1 cm thick
    - 4 cm wide
  - Wavelength shifting fibre optic readout
  - Multi-anode PMTs
  - Magnetised (~1.3 T)

## MINOS Event Topologies





•long μ track+ hadronic activity at vertex

#### **NC Event**



• short event, often diffuse

Monte Carlo

 $v_e$  CC Event



• short, with typical EM shower profile

## Muon Neutrino Disappearance Analysis

## **Experimental Approach**

- Two detector experiment to reduce systematic errors:
  - Flux, cross-section and detector uncertainties minimised
  - Measure unoscillated  $v_{\mu}$  spectrum at Near detector
    - extrapolate
  - Compare to measured spectrum at Far detector





$$P(v_{\mu} \to v_{\mu}) = 1 - \sin^2 2\theta \sin^2 (1.267 \Delta m^2 L / E)$$

### **Event Classification**

- Separate 2 event types:
  - Charged Current  $\nu_{\mu}$  (oscillations cause deficit)
  - Neutral Current (all active neutrinos = no change)
- Event classification parameter
  - likelihood-based
  - 3 Probability Density
     Functions
    - Track length
    - Pulse height fraction in track
    - Pulse height per plane



# Tuning the beam MC

- 6 beam configurations
- Use Near detector data
- Fit to a model of hadron production
- Reweight MC



## Near to Far Extrapolation

- Far detector spectrum != Near detector
  - Project different solid angles
  - $-\pi/K$  decay kinematics
    - average neutrino energy varies with angle



- Extrapolate Near detector spectrum
  - using knowledge of beam line geometry and  $\boldsymbol{\pi}$  /K decay kinematics

## MINOS Best-fit Spectrum

- Data from first year:
   1.27x10<sup>20</sup> POT
- Exclude no oscillations at 6.2σ (rate only, <10 GeV)
- Best fit oscillation parameters:

 $|\Delta m^2_{32}| = 2.74^{+0.44} \text{ (stat + syst)} \times 10^{-3} \text{ eV}^2$  1.5  $\sin^2 2\theta_{23} = 1.00^{-0.26} \text{ (stat + syst)}$ 

• Constraining the fit to  $\sin^2(2\theta_{23}) = 1$  yields:

 $|\Delta m_{32}^2| = 2.74 \pm 0.28 \times 10^{-3} \text{ eV}^2$ 



## Allowed Region

- Consistent with previous experiments
- Already
   competitive in
   measurement
   of |Δm<sup>2</sup><sub>32</sub>|
- Phys.Rev.Lett.97:191801,2006
- PRD to be published



## MINOS Predicted Sensitivity

- Sensitivity for different POT
- Evaluated at current best fit point
- Contours are 90%
   C.L. statistical errors only

#### MINOS Sensitivity as a function of Integrated POT



## Quiz Question

on Jeopardy (US Quiz Show)



Photo by Jeff Nelson

## Neutrino Time-Of-Flight (NEW!)

- GPS synchronises two detectors
- Know distance between detectors precisely:
  - 734,298.6 +/- 0.7 m
  - ~2.5 ms at c
- Measure distribution of event times in two detectors
- Loglikelihood fit to time distribution allowing δ<sub>t</sub> to vary

#### **MINOS PRELIMINARY**



Far detector events = points
Near detector prediction= solid line

## Time-Of-Flight Result (NEW!)

- MINOS T.O.F.:
  - 2449223 +/- 84 (stat.) +/- 164 (syst.) ns @ 99% C.L.
- Nominal T.O.F.:
  - 2449356 ns (@ c)
- In terms of velocity:
  - $(v-c)/c = (5.4 +/- 7.5) \times 10^{-5} (99\% C.L.)$
- Previous experiment had baseline of ~500 m with timing precision of ~ns, gave result of:
  - $|v-c|/c < 4 \times 10^{-5}$  (95% C.L.)

# Search for sub-dominant neutrino oscillations

## $\nu_{\mu} \rightarrow \nu_{e}$ Oscillation Search

- Sub-dominant neutrino oscillations
  - Look for  $v_e$  appearance
  - P( $\nu_{\mu}$ → $\nu_{e}$ ) ≈ sin<sup>2</sup>θ<sub>23</sub> sin<sup>2</sup>2θ<sub>13</sub> sin<sup>2</sup>(1.27Δm<sup>2</sup><sub>31</sub>L/E)
    - plus CPv and matter effects
- Look for events with compact shower and typical EM profile
  - MINOS optimised for  $\nu_{\mu}$
  - $v_e$  signal selection is harder
    - Steel thickness 2.54cm = 1.44X<sub>0</sub>
    - Strip width 4.1cm ~ Molière radius (3.7cm)
  - Primary background from NC events, also
    - beam  $\nu_{e}$ , high-y  $\nu_{\mu}$  CC, oscillated  $\nu_{\tau}$  in FD
- However, first indication of non-zero  $\theta_{13}$  possible

## Sensitivity to $\theta_{13}$ (4x10<sup>20</sup> POT)





- Can improve on current best limit from CHOOZ
  - Matter effects can change  $v_e$  yield by ±20%
  - Reach depends strongly on POT
  - With 16x10<sup>20</sup> POT can make significant improvements to world's best limit and increase chance of discovery!

## Sensitivity to $\theta_{13}$ (16x10<sup>20</sup> POT)

3  $\sigma$  and 90% CL Sensitivity to  $\text{sin}^{\text{2}}\text{(2}\theta_{\text{13}}\text{)}$ 



Dashed lines = 90% C.L.

Solid lines =  $3\sigma$ 

Analysis underway...

### Conclusions

- MINOS: long-baseline neutrino oscillation experiment
  - NuMI neutrino beam at Fermilab
  - Two massive detectors
- Analysis of 1st year of beam data (1.27x10<sup>20</sup> POT):
  - Exclude no oscillations at  $6.2\sigma$  (rate only, <10 GeV)
  - Results:  $|\Delta m^2_{32}| = 2.74^{+0.44}_{-0.26} \text{ (stat + syst)} \times 10^{-3} \text{ eV}^2$  $\sin^2 2\theta_{23} = 1.00^{-0.26}_{-0.13} \text{ (stat + syst)}$
- Constraining the fit to  $\sin^2(2\theta_{23}) = 1$  yields:

$$|\Delta m^2_{32}| = 2.74 \pm 0.28 \times 10^{-3} \text{ eV}^2$$

Time-of-flight measurement:

$$(v-c)/c = (5.4 +/- 7.5) \times 10^{-5} @ 99\% C.L.$$

- Sensitivity to  $\theta_{13}$  improve on Chooz
- Updated  $\Delta m^2$  measurement this summer...

... and MUCH MORE TO COME

## Backup slides



### MINOS v<sub>µ</sub>-CC Event Selection

- Fiducial Cuts (near and far)
- Select μ- tracks (v<sub>μ</sub>)
- CC/NC classification cuts



- Far detector specific cuts to remove cosmic ray and light injection contamination
- Far detector data was blinded, all cuts developed & tuned with MC



### MINOS v<sub>µ</sub>-CC Event Selection

- •Event contains at least one reconstructed track
- •Reconstructed vertex is within fiducial volume
- •Near: I < z < 5 m, r < I m from beam center
- •Far: 0.5 < z < 14.3 m or 16.2 < z < 28.0 m, r < 3.7 m







#### Far Detector Beam Data Selection

- •FD data selected based on position, direction and timing information
- Cosine of angle between track
   direction and beam direction > 0.6
- •Events have  $-20 < t < 30 \mu s$  (GPS)
- •Cosmic ray background estimated using sidebands, <0.5 events
- •215  $\nu_{\mu}$  CC events







## **Physics Distributions**



## Systematic Uncertainties

- Neutral Currents
  - Look at PID in near detector vs energy
  - Large uncertainty in low energy NC cross sections
  - $-\delta$ (NC contamination): 50%
- Intranuclear Rescattering
  - Models for pion energy loss in nucleus vary
  - Hadron formation zone affects visible energy in v CC event
  - $\delta$ (Hadron Energy Scale)=11%





### Summary of Systematic Uncertainties

| Preliminary Uncertainty                 | Shift in ∆m <sup>2</sup> (10 <sup>-3</sup> eV <sup>2</sup> ) | Shift in sin²2θ |
|-----------------------------------------|--------------------------------------------------------------|-----------------|
| Near/Far normalization ±4%              | 0.050                                                        | 0.005           |
| Absolute hadronic energy scale ±11%     | 0.060                                                        | 0.048           |
| NC contamination ±50%                   | 0.090                                                        | 0.050           |
| All other systematic uncertainties      | 0.044                                                        | 0.011           |
| Total systematic (summed in quadrature) | 0.13                                                         | 0.07            |
| Statistical error (data)                | 0.36                                                         | 0.12            |

- •Size of uncertainties are obtained by doing MC studies
- Make a set of fake data but shifted by the values in the table, fit fake data
- Table shows shift in the oscillation parameters
- •3 largest uncertainties included in oscillation fit as nuisance parameters

## Observed vs. Expected

| Data Sample              | FD<br>Data | Expected<br>(Matrix Method;<br>Unoscillated) | Data/MC<br>(Matrix Method) |
|--------------------------|------------|----------------------------------------------|----------------------------|
| ν <sub>μ</sub> (<30 GeV) | 215        | 336.0±14.4                                   | 0.64±0.05                  |
| ν <sub>μ</sub> (<10 GeV) | 122        | 238.7±10.7                                   | 0.51±0.05                  |
| ν <sub>μ</sub> (<5 GeV)  | 76         | 168.4±8.8                                    | 0.45±0.06                  |

- Below 10 GeV a 49% deficit is observed
- Significance is 6.2σ (stat+syst)

## MINOS Calibration System

- Calibration of ND, FD Response:
- LED-based Light Injection system
  - Track PMT gains
- Cosmic Ray Muons
  - Remove variations along and between strips
  - Stopping muons for detector-detector calibration
- Overall energy scale:
  - Test-beam with mini-MINOS detector
  - Measured e/μ/π/p response



Energy resolution:
(E in GeV)
Hadrons:
56% / √E ⊕ 2%
Electrons:
21% / √ E ⊕ 4% / E



## Backup: MINOS $v_e$ Signal / Background

- Goal: must distinguish between EM and hadronic shower energy
- Several discriminating techniques have been tried to enhance signal/background separation
  - Cuts, Multivariate Discriminant Analysis, ANN, Image recognition



| 5.6         39.0         8.7         4.7         58.0         29.1 | $\nu_{\mu}$ CC | NC   | $ u_{ m e}^{ m \ beam}$ | $v_{\tau}$ CC | Total | $v_{\rm e}^{\rm  osc}$ |
|--------------------------------------------------------------------|----------------|------|-------------------------|---------------|-------|------------------------|
|                                                                    | 5.6            | 39.0 | 8.7                     | 4.7           | 58.0  | 29.1                   |

#### **Neural Net example**

Oscillation parameters:

$$\sin^2(2\theta_{13}) = 0.1$$
  
 $|\Delta m_{32}|^2 = 2.7 \times 10^{-3} \text{eV}^2$   
 $\sin^2(2\theta_{23}) = 1$ 

- POT =  $16x10^{20}$
- Oscillated  $v_e$  are shown in black
- Cutting at 0.8:
  - $v_e$  purity ~ 30%
  - Signal/√Background = 3.8

# Backup: Study MINOS $v_e$ Background with Data

- Several techniques developed to measure backgrounds in ND:
- Muon removal from CC events to estimate NC contribution
  - Assumes similar hadron multiplicities/shower topologies
  - Requires some corrections from MC
- Using horn off data to resolve NC,  $\nu_{\mu}$  CC background components
  - During horn off running, pions are no longer focused and energy spectrum peak disappears
  - Running event selection on horn-off data enhances NC component of background







#### MINOS PRELIMINARY

Summary of systematic uncertainties on relative time.

|                |                              | ${\it Uncertainty}$ |
|----------------|------------------------------|---------------------|
|                | Description                  | (99% C.L)           |
| $\overline{A}$ | Distance between detectors   | 6 ns                |
| В              | ND Antenna fibre length      | 67  ns              |
| $\mathbf{C}$   | ND electronics latencies     | 77  ns              |
| D              | FD Antenna fibre length      | 101  ns             |
| $\mathbf{E}$   | FD electronics latencies     | 9  ns               |
| $\mathbf{F}$   | GPS and transceivers         | 74  ns              |
| G              | Detector readout differences | 24  ns              |
|                | Total                        | 164 ns              |

# Systematic uncertainties on time measurement between Near and Far Detectors (Sys. uncertainty on t<sub>2</sub>-t<sub>1</sub>)