

Recent *B* Physics Results from the Tevatron

KEK TC6 February 7, 2007

Kevin Pitts
University of Illinois

Outline

Introduction

- > Tevatron, CDF and DØ detectors
- > Experimental challenges
- > Triggering
- Recent Results
 - $> B_s$ Mixing
 - $> B \rightarrow hh'$
 - $\triangleright \Lambda_b$ Lifetime, Σ_b observation
- Things not covered
- Prospects
- Conclusions

Fermilab Tevatron

- pp collisions at 1.96 TeV
- 1.7 fb⁻¹ "good" data on tape (results today 1fb⁻¹)
- 1.7MHz collision rate (396 ns bunch spacing)
- Peak luminosity 2.6x10³²cm⁻²s⁻¹
 - \triangleright Average ~5-6 pp interactions per bunch crossing
- Anticipate luminosity as high as 3x10³²cm⁻²s⁻¹
 - > Challenging for the detector, trigger and event reconstruction

CDF Detector

- Strong central tracking
- Silicon vertex detector
- Good lepton identification
- Particle ID (TOF and dE/dx)
- Excellent mass resolution

High rate trigger/DAQ system

Silicon vertex trigger

CDF silicon detector installation

DØ Detector

- Excellent coverage of Tracking and Muon Systems
- Excellent calorimetry and electon ID
- 2 T Solenoid, polarity reversed weekly
- High efficiency muon trigger with muon p_T measurement at Level1 by toroids

April 2006 Layer 0 Installation

B Physics at the Tevatron

Pros

- Enormous cross-section
 - ~50 μbarn total
 - ~3-5 μbarn "reconstructable"
 - ➤ At $1x10^{32}$ cm⁻²s⁻¹ \Rightarrow ~400Hz of reconstructable $B\overline{B}$!!
- All B species produced
 - $\triangleright B_u, B_d, B_s, B_c, \Lambda_b, \Sigma_b$...
- Production is incoherent

Cons

- Large inelastic background
 - Triggering & reconstruction are challenging
 - \triangleright Modes with π^0 's are tough
- Reconstruct a B hadron,
 ~25% chance 2nd B is within detector acceptance
- p_T spectrum relatively soft
 - > Typical $p_{\tau}(B) \sim 10-15$ GeV for trigger+reconstructed B's

Trigger Strategies

- Dimuons (dielectrons)
 - Clean signatures, less background
 - ► Get lots of $B \rightarrow J/\psi$ modes
 - **>** Also rare decays (B→μμ, μμ X)
- Single electrons/muons
 - > Semileptonic decays
- Track only
 - > Hadronic modes

We've come a long way...

- Success of the Tevatron B program has benefited from:
 - More luminosity
 - Better detectors, triggers, DAQ systems
 - Better understanding of production
 - Better understanding of analysis techniques

Kevin Pitts

- On two occassions, there has been a major transition in our capabilities:
 - 1. silicon microvertex detector (~1991)
 - 2. utilizing silicon in the trigger (~2002)

6th KEK Topical Conference

February 8, 2007

Kevin Pitts

Page-10

Silicon Vertex Trigger (SVT)

SVT incorporates silicon info in the Level 2 trigger... select events with large impact parameter!

- Uses fitted beamline
- impact parameter per track
- System is "deadtimeless":
 - ~25μsec/event for readout+ clustering + track fitting

What do we get with the SVT?

Access to many new modes

inefficiency for events with low decay time

[can be accounted for e.g. Bs mixing]

6th KEK Topical Conference

February 8, 2007

Kev

proper time [cm] 'age-12

Outline

- Introduction
 - > Tevatron, CDF and DØ detectors
 - > Experimental challenges
 - Triggering
- Recent Results
 - $\triangleright B_s$ Mixing
 - $> B \rightarrow hh'$
 - $\triangleright \Lambda_b$ Lifetime, Σ_b observation
- Things not covered
- Prospects
- Conclusions

Neutral B Meson Oscillations

Cabibbo-Kobayashi-Maskawa Matrix

fundamental parameters that must be measured

Oscillation frequencies (Δm_d , Δm_s) determine poorly known V_{td} , V_{ts}

Theoretical uncertainties <u>reduced</u> in ratio:

$$rac{\Delta m_s}{\Delta m_d} = rac{m_{B_s}}{m_{B_d}} \xi^2 \left| rac{V_{ts}}{V_{td}}
ight|^2 \hspace{1.0in} \xi = rac{B_{B_s} \sqrt{f_{B_s}}}{B_{B_d} \sqrt{f_{B_d}}} = 1.210^{+0.047}_{-0.035} \sim 4\%$$

6th KEK Topical Conference February 8, 2007 Kevin Pitts Page-14

Experimental Asymmetry

$$\mathcal{A}(t) = rac{dN(t)_{ ext{unmixed}}/dt - dN(t)_{ ext{mixed}}/dt}{dN(t)_{ ext{unmixed}}/dt + dN(t)_{ ext{mixed}}/dt}$$

start with a B_s beam

- $\rightarrow \Delta m_d = 0.507 \pm 0.005 \text{ ps}^{-1}$
- \rightarrow mixing period is 8.4 τ

• B_s oscillations

- $\Delta m_s > 14.4 \text{ ps}^{-1}@ 95\% \text{ CL}$ (2005 world average)
- \triangleright mixing period < $\tau/3$.

Example: Fully Reconstructed Signal

 $L = 1.0 \text{ fb}^{-1}$

→ data

Cleanest decay sequence

$$ar{B}^0_s o D_s^+ \pi^-$$

$$D_s^+ o \phi \pi^+$$

$$(D_s^+ o K^{*0} K^+, \pi^+ \pi^- \pi^+)$$

Include partially reconstructed decays:

$$D_s^{*+}\pi^ D_s^+
ho^-$$
 missing γ or π^0

CDF Run II Preliminary

Also use 6 body modes:

$$ar{B}^0_s
ightarrow D_s^+\pi^-\pi^+\pi^-$$
 , $D_s^+
ightarrow \phi\pi^+, K^{*0}K^+, \pi^+\pi^-\pi^+$

Total hadronic signal: 8700 events

Decay Time Resolution

Maximize sensitivity: use candidate specific decay time resolution

Superior decay time resolution gives CDF sensitivity at much larger values of ∆m_s than previous experiments

$$\Delta m_s = 17.77 \pm 0.10 \, (\mathrm{stat.}) \pm 0.07 \, (\mathrm{syst.}) \, \mathrm{ps^{-1}}$$
(2.83 THz, 0.012 eV)

Probability random fluctuation mimics signal: $8x10^{-8} \Rightarrow 5.4\sigma$

6th KEK Topical Conference February 8, 2007 Kevin Pitts Page-18

extract $|V_{td}/V_{ts}|$

$$\left|rac{V_{td}}{V_{ts}}
ight| = 0.2060 \pm 0.0007 \, (ext{exp.})^{+0.0081}_{-0.0060} \, (ext{theo.})$$

6th KEK Topical Conference February 8, 2007 Kevin Pitts Page-19

Charmless Two-Body Modes

- Previous studies of B^0 modes have provided a wealth of information
- The Tevatron simultaneous access to $B_s \& B^0$ (plus baryons) allows an original physics program complementary to the e^+e^- **B**-factories
 - \triangleright Belle Y(5s) running can access B_{ς}

- Very rich physics: BR, CP asymmeries
 - \triangleright B_s and baryons help complete the picture
 - \triangleright Current and future (tagged) results help extract *CP* angle γ

Kevin Pitts

•For h^+h^- each pair passing cuts, plot mass under $\pi\pi$ hypothesis.

 \triangleright good mass resolution (≈22 MeV/c²), several modes overlap in one peak.

•Determine signal composition with a Likelihood fit, combining information from kinematics (mass and momenta) and particle ID (dE/dx).

B⁰ results

• Br($B^0 \rightarrow \pi^+\pi^-$)

Cleo (HFAG06)

BaBar (HFAG06)

5.80 ± 0.40 ± 0.30

5.10 ± 0.20 ± 0.20

CDF 1 fb⁻¹

5.10 ± 0.33 ± 0.36

e⁺e⁻ Average

5.25 ± 0.24

5.22 ± 0.22

 $BR(B^0 \rightarrow \pi^+\pi^-) \times 10^6$

• Direct CP violation in $Br(B^0 \rightarrow K^+\pi^-)$

Rare modes search

- BR Cuts optimized to measure yield best discovery/limit for $B_s \rightarrow K^- \pi^+$ (physics/0308063)
- Signal is a combination of six modes (three newly observed)
 - $> B^0 \rightarrow \pi^+\pi^-/K^+\pi^- \& B_s \rightarrow K^+K^-$ already established.
- Also set limits on annihilation modes $B_s \rightarrow \pi^+ \pi^-$ and $B^0 \rightarrow K^+ K^-$

3 new rare modes observed

$$N_{\text{raw}}(B_s^0 \to K^- \pi^+) = 230 \pm 34 \; (stat.) \pm 16 \; (syst.)$$
 (85)

$$N_{\text{raw}}(\Lambda_b^0 \to p\pi^-) = 110 \pm 18 \; (stat.) \pm 16 \; (syst.)$$
 (65)

$$N_{\text{raw}}(\Lambda_b^0 \to pK^-) = 156 \pm 20 \; (stat.) \pm 11 \; (syst.)$$
 (11 σ)

Direct CPV in $B_s \rightarrow K^-\pi^+$

CDF Run II Preliminary L_{int}=1 ...

"Is observed direct CP violation in $B^0 \rightarrow K^+\pi^-$ due to new physics? Check standard Model prediction of equal violation in $B_s \rightarrow K^-\pi^+$ "

[Lipkin, Phys. Lett. B621:126, 2005], [Gronau&Rosner Phys.Rev. D71 (2005) 074019].

Expect large $A_{cp} \approx 0.37$ in this mode, sign opposite to $A_{cp}(B^0 \rightarrow K^+\pi^-)$

$$A_{\rm CP} = \frac{N(\overline{B}_s^0 \to K^+\pi^-) - N(B_s^0 \to K^-\pi^+)}{N(\overline{B}_s^0 \to K^+\pi^-) + N(B_s^0 \to K^-\pi^+)} = 0.39 \pm 0.15 \; (stat.) \pm 0.08 \; (syst.)$$

- · First measurement of CP asymmetry in the B_s system
- · Very interesting to pursue with more data!
- · Direct CP asymmetry measurements for Λ_b modes in progress.

Λ_b Lifetime in $J/\psi\Lambda$

- Going back to first measurements at LEP, $\tau(\Lambda_b)$ has been low compared to HQE expectations.
 - For $\tau(\Lambda_b)/\tau(B^0)$, early theory predictions (~0.94) and experiment differed by more than $2\sigma \Rightarrow "\Lambda_b$ lifetime puzzle"
 - Current NLO QCD + $1/m_b^4$ calculation: $\tau(\Lambda_b)/\tau(B^0) = 0.86 \pm 0.05$ consistent w/HFAG 2005 world avg: $\tau(\Lambda_b)/\tau(B^0) = 0.803 \pm 0.047$
 - Experimental sensitivity dominated by semileptonic Λ_b measurements
- D0 and CDF now have sufficient statistics to weigh in with fully reconstructed $\Lambda_b \rightarrow J/\psi \Lambda$
 - \triangleright Trigger on $J/\psi \rightarrow \mu\mu$, reconstruct $\Lambda \rightarrow p\pi$.

Λ_b Lifetime in $J/\psi\Lambda$

- 174±21 signal events
- Use Λ_b vertex to measure decay length
- Dominant systematic uncertainty comes from $B^0 \rightarrow J/\psi K_S$ contamination

 $\tau(A_b) = 1.298 \pm 0.137(stat) \pm 0.050(syst) ps$

Λ_b Lifetime in $J/\psi\Lambda$

• Signal: 538 \pm 38 Λ_h events

- Use J/ψ vertex to measure Λ_b decay length
- Major sources of systematics are due to modeling of ct resolution and V⁰ pointing

Result

$$\tau(\Lambda_b) = 1.593^{+0.083}_{-0.078} \text{ (stat)} \pm 0.033 \text{ (syst)ps}$$

Λ_b lifetime summary

The jury's still out...

 Λ_h Lifetime Measurements

- Prior world average $\tau(\Lambda_b)/\tau(B^0)$ was lower than the NLO prediction.
- New CDF result sits about 3σ above world average!
- New D0 results consistent with world average & CDF.
 - New D0 semileptonic result $(\Lambda_b \rightarrow \Lambda_c \mu \nu \text{ with } \Lambda_c \rightarrow pK_S)$ also shown
- Need more experimental inputs to conclude the issue.
- Looking forward to $\tau(\Lambda_b)$ in fully hadronic decay modes, e.g. $\Lambda_b \rightarrow \Lambda_c \pi$.
 - Larger sample (~3000 signal)

Kevin Pitts Page-28

Reconstructing $\Lambda_b \rightarrow \Lambda_c \pi$

 Use silicon vertex trigger sample to reconstruct:

$$\Lambda_b^0 \to \Lambda_c^+ \pi^-$$

 $\Lambda_c^+ \to \mathrm{pK}^- \pi^+$

- 3000 Λ_b signal events
 - \triangleright Much larger than $J/\psi\Lambda$
 - Lifetime measurement in progress

Λ_b^0 Signal Region Composition	
$\Lambda_b^0 \in [5.565, 5.670] \text{ GeV/c}^2$	
$N(\Lambda_b^0)$	86%
N(B)	9%
Comb. Bkg.	5%

Σ_b Observation

- Λ_b (udb) only established b baryon
- Sufficient statistics at Tevatron to probe other heavy baryons

• Start with $\Lambda_h \rightarrow \Lambda_c \pi$ sample

- Next accessible baryons are uub and ddb states with $J^p = 1/2(\Sigma_b)$ and 3/2 (Σ_b^*)
- Observe signals consistent with lowest lying charged Σ_b states

Topics Not Covered

- Recent Tevatron results in the following areas
 - \triangleright B_s lifetime difference $(\Delta\Gamma_s)$
 - \triangleright B_s mixing phase (ϕ_s)
 - \triangleright Excited states (B_s^{**})
 - > CP asymmetries in semileptonic decays
 - > X(3872)
 - > Charmonium

```
\checkmark \chi_c states, J/\psi, \psi' polarization
```

- ightharpoonup Rare $B^0
 ightharpoonup \mu\mu$, $B_s
 ightharpoonup \mu\mu$
- \triangleright Rare $B\rightarrow \mu\mu X$ decays
- > B cross section measurements
- \triangleright B_c measurements
- > B lifetimes
- B branching ratios
- Charm physics(rare decays, BR, DCS)

Prospects

- Expect several fb⁻¹ of data by 2009
 - many measurements will continue to be updated
 - > Many new modes & measurements are possible
- We see no new physics in the B_s oscillation frequency, but work towards constraining the B_s lifetime difference $\Delta\Gamma_s$ and mixing phase is ongoing.

Conclusion

- The B program at the Tevatron has been an incredibly fruitful endeavor.
- The program is complementary to and competitive with e^+e^- B factories
- With higher Tevatron luminosity, we are accumulating data at a tremendous rate.
 - \triangleright We expecting ~several fb⁻¹ by the end of the run.
- There is lots more to come!

Backup Slides

Extracting $|V_{td}|$, $|V_{ts}|$ & $|V_{td}/V_{ts}|$

$$egin{aligned} \Delta m_q &= rac{G_f^2}{6\pi^2} m_{B_q} M_W^2 f(rac{m_t^2}{M_W^2}) \eta_{ ext{QCD}} B_{B_q} f_{B_q}^2 |V_{tb}^* V_{tq}|^2 & q = d, s \end{aligned}$$

All factors well known except
$$\sqrt{B_{B_d}}f_{B_d}=244\pm26\,\,\mathrm{MeV}$$

from Lattice QCD calculations - see Okamoto, hep-lat/0510113

Limits precision on V_{td} , V_{ts} to $\sim 10\%$

Theoretical uncertainties <u>reduced</u> in ratio:

$$rac{\Delta m_s}{\Delta m_d} = rac{m_{B_s}}{m_{B_d}} \xi^2 \left| rac{V_{ts}}{V_{td}}
ight|^2 \hspace{1.5cm} \xi = rac{B_{B_s} \sqrt{f_{B_s}}}{B_{B_d} \sqrt{f_{B_d}}} = 1.210^{+0.047}_{-0.035} \hspace{0.2cm} \sim 4\%$$

PDG 2006 $\Delta m_d = 0.507 \pm 0.005 \,
m ps^{-1}$

Precision measurement Δm_s yields $rac{V_{td}}{V_{ts}}$ to 4%

World Knowledge on ∆m_s

- \cdot D0 sensitivity = 14.1 ps⁻¹
- ·Observe large positive amplitude value around 19 ps-1
 - Probability it's consistent with no oscillation = 5%
 - Probability it's consistent with A=1 (oscillation) = 15%
- \cdot "Two sided limit" requires assumption that the peak is associated with real signal...
 - \cdot 17< Δm_s < 21 ps⁻¹ at 90% CL

CDF Run II

 $L = 1.0 \text{ fb}^{-1}$

Probability that background could fluctuate to mimic a signal of this significance: $0.2\% \approx 3\sigma$

 $\Delta m_s = 17.33 + 0.42 \text{ (stat)} \pm 0.07 \text{ (syst)} \text{ ps}^{-1}$

Ingredients in Measuring Oscillations

6th KEK Topical Conference February 8, 2007 Kevin Pitts Page-38

$$\frac{f_s \cdot BR(B_s^0 \to \pi^+ \pi^-)}{f_d \cdot BR(B^0 \to K^+ \pi^-)} = 0.007 \pm 0.004 \ (stat.) \pm 0.005 \ (syst.)$$

$$\frac{BR(B^0 \to K^+ K^-)}{BR(B^0 \to K^+ \pi^-)} = 0.020 \pm 0.008 \ (stat.) \pm 0.006 \ (syst.)$$

using HFAG:

$$BR(B^0 \to K^+K^-) = (0.39 \pm 0.16 \; (stat.) \pm 0.12 \; (sust.)) \times 10^{-6}$$
 (< 0.7 x 10⁻⁶ @ 90% C.L.) Expect [0.01 - 0.2] x10⁻⁶ [Beneke&Neubert Nucl.Phys. B675, 333(2003)]

WA $(0.7\pm 0.12)x10^{-6} \rightarrow \text{New WA} : (0.15 \pm 0.10)x10^{-6}$ CDF result for $B^0 \rightarrow K^+K^-$ has similar precision as *B*-factories!

$$BR(B_s^0 \to \pi^+\pi^-) = (0.53 \pm 0.31 \; (stat.) \pm 0.40 \; (syst.)) \times 10^{-6} \; \text{(<1.36 x 10^{-6} @ 90\% C.L.)}$$

Expected: $[0.007 - 0.08]x10^{-6}$ [Beneke&Neuber t Nucl.Phys. B675, 333(2003)] Expected: $0.42 \pm 0.06x10^{-6}$ [Ying Li et al. Phys.Rev. D70:034009 (2004)]

World best limit by far.