Double Chooz

in the Light of the Reactor Neutrino Program for θ_{13}

Thierry Lasserre (CEA/Saclay & APC/Paris) 6th KEK Topical Conference Frontiers in Particle Physics and Cosmology (KEKTC6) Feb. 6 (Tue) - 8(Thu), 2007

http://doublechooz.in2p3.fr/

θ_{13} & beam experiments

<u>Appearance probability</u> : $P(v_{\mu} \rightarrow v_{e})$

→ other dependences: $sin(2\theta_{23})$, $sin(\theta_{23})$, $sign(\Delta m_{31}^2)$, δ -CP phase in $[0,2\pi]$

θ_{13} & reactor experiments

- $< E_v > \sim$ a few MeV \rightarrow only disappearance experiments $\rightarrow \sin^2(2\theta_{13})$ measurement independent of δ -CP
- 1-P($v_e \rightarrow v_e$) = sin²(2 θ_{13})sin²($\Delta m_{31}^2 L/4E$) + O($\Delta m_{21}^2 / \Delta m_{31}^2$)

→ weak dependence in Δm^2_{21}

• a few MeV v_e + short baselines \rightarrow negligible matter effects (O[10⁻⁴]) ₁₃) measurement independent of sign(Δm_{13}^2)

→ sin²(2θ

Th. Lasserre 07/02/2007

Double Chooz Institutions

University of Aachen

Argonne National Laboratory

Universität Hamburg

Illinois Institute of Technology

Kansas State University

Lawrence Livermore National Laboratory

Miyagi University of Education

DAPNIA CEA/Saclay

Tohoku University

Tokyo Metropolitan University

University of Oxford

University of Alabama

<u>CIEMAT, Centro de Investigaciones Energeticas</u> <u>MedioAmbientales y Tecnologicas</u>

Max Planck Institut für Kernphysik Heidelberg

Institute for Nuclear Research RAS

Kobe University

University of Columbia

Niigata University (KEK collaboration)

Sandia National Laboratories

Tohoku Gakuin University

Eberhard-Karls Universität Tübingen

University of Sussex

Th. Lasserre 07/02/2007

<u>AstroParticule et</u> <u>Cosmologie (APC)</u>

Drexel University

Hiroshima Institute of technology

Institute of Physical Chemistry RAS

RRC Kurchatov Institute

Louisiana State University

University of Notre Dame

Subatech Nantes

Tokyo Institute of Technology

<u>University of</u> <u>Tennessee</u> <u>University of Chicago</u>

The - new - concept

Expected Oscillation Signal

Improving CHOOZ: summary

@CHOOZ: R = 1.01 ± 2.8%(stat)±2.7%(syst)

- Statistical error -

	CHOOZ	Double-Chooz
Target volume	5,55 m ³	10,3 m ³
Target composition	6,77 10 ²⁸ H/m ³	6,82 10 ²⁸ H/m ³
Data taking period	Few months	3-5 years
Event rate	2700	CHOOZ-far : 40 000/3 y
	2100	CHOOZ-near: >1 10 ⁶ /3 y
Statistical error	2,7%	0,5%

Luminosity incerase $L = \Delta t \times P(GW) \times Np$

- Systematic & Background errors -

	Chooz	Double-Chooz
Reactor cross section	$1.9 \ \%$	
Number of protons	0.8~%	0.2~%
Detector efficiency	$1.5 \ \%$	$0.5 \ \%$
Reactor power	0.7~%	
Energy per fission	0.6~%	

Improve the detector concept Two identical detectors \rightarrow towards $\sigma_{relative} < 0,6\%$ Careful backgrounds control \rightarrow error<1%

2002-2005: Detector design

2004-2007: Detector design

Mechanics: Acrylics and Buffer

Vessel	Dimension	Distorsion	Stress	Transport & Integration
	Inputs : Target : 12 mm γ catcher : 12 m Loads = dead load Closing R&D Radiopurity test Contract 2007/8	distortion : <1 mm	VM stress: 1 MPa	
	Inputs : Buffer : 3 mm Loads = 2 kg / pmts + dead load Stainless steel delivered Radiopurity OK - 10 ⁻⁹ g/g U/th & - <20 mBq/kg Co	distortion : 4.1 mm	M stress: 23 MPa	

Th. Lasserre 07/02/2007

γ ray shiedling & Outer Veto

- γ's from rock radioactivity dominate the single rate in the Target+GC (no shield)
- Shielding with 17 cm of low radioactive steel
 - \rightarrow 250 tons of steel to be assembled in bars & 1 cm thick steel vessel guarantees the tightness
- Steel bars demagnetization under preparation
- Call for the bid December 2006 \rightarrow order to company soon

Th. Lasserre 07/02/2007

Gd doped scintillator

• Solvant: 20% PXE – 80% Dodecane

• Gd loading: being developed @MPIK

- 0.1% Gd loading of Gd-dmp (Beta Dikitonate)
- Long term Stability promising
- LY ~7000 ph/MeV: 6 g/l PPO + 50 mg/l Bis-MSB
- Attenuation length: 5-10 m meters at 420 nm

MPIK new building for storage

and purification of scintillators

• Radiopurity \rightarrow U: 10⁻¹² g/g - Th: 10⁻¹² g/g - K: 10⁻⁹ g/g

- Heidelberg MPIK \rightarrow Transition to industrial production of 100 kg of Gd \rightarrow summer 2007
- On-site storage building *available* at Chooz → Upgrade will be done in 2007

Th. Lasserre 07/02/2007

Technical 1/5 mockup at Saclay

Validation of the technical choices for the vessels : construction, material compatibility, filling, and the integration

Total of 2000 I of oil Filling 13/12/2005 Stable in the detector

- Inner Target: 1201: 20%PXE+80%dodecane+0.1%Gd - Gamma Catcher: 2201: 20%PXE+80%dodecane

Phototubes baseline

- 10" Ultra low background tubes + HV
- ~400 PMTs \rightarrow ~15 % coverage
- Energy resolution goal: 7 % at 1 MeV
- Current work :
 - PMT selection ongoing
 - Radiopurity
 - Angular sensitivity
 - Magnetic shielding
 - Tilting tube options (done)
 - Cabling & Tightness (done)
 - Light concentrator?

Lasserre 07/02/2007

Inner and Outer Veto systems

Inner Veto : Tag μ and secondaries. Very high ϵ (>99.5%)

50 cm, scintillating mineral oil
~70 PMTs (8 inches)

Reflective walls (paint + Tyvek)

Outer Veto : Tag "near miss" μ . Redundancy for higher rejection power Panels of strips of coextruded plastic scintillator +TiO₂ reflector with 1.2 mm diameter wavelength shifting fiber

Th. Lasserre 07/02/2007

Testing & prototyping

Demagnetization

Th. Lasserre 07/02/2007

L1 Trigger Board

Electronics & DAQ

HV+Front-End:

- Single cable for HV + PMT signal
- Amplification x15 Pulse shape Baseline correction
- Handle high energy muons
- Analog Pulse Summation for Level 1 Trigger

Flash-ADC

- Wave-form sampling @ 500MHz
- 8-bit ADC (few PEs/ch for v-events)
- Developed between APC & CAEN

Prototype FADC being tested

Detector Calibration

- Estimate relative Near/far detection efficiency to within 0.5%
- Measure relative Near/Far positron energy scale to within 1%
- Radioactive sources + Laser & LEDs → devices:
 - Target: Articulated Arm \rightarrow 1 cm positioning accuracy
 - CG and Buffer: Wire driven sources (guide tubes)
 - Deployment of laser light sources and Tagged neutron source on z-axis.

Systematics

		Chooz	Double-Chooz			
Reactor-	ν flux and σ	1.9 %	<0.1 %			
	Reactor power	0.7 %	<0.1 %	I wo "identical" detectors,		
	Energy per fission	0.6 %	<0.1 %	Low Skg		
Detector - induced	Solid angle	0.3 %	<0.1 %	Distance measured @ 10 cm + monitor core barycenter		
	Target Mass	0.3 %	0.2 %	Same weight sensor for both det.		
	Density	0.3 %	<0.1 %	Accurate T control (near/far)		
	H/C ratio & Gd concentration	1.2 %	<0.2%	Same scintillator batch + Stability		
	Spatial effects	1.0 %	<0.1 %	"identical" Target geometry & LS		
	Live time	few %	0.25 %	Measured with several methods		
Analysis	From 7 to 3 cuts	1.5 %	0.2 - 0.3 %	(see next slide)		
Total		2.7 %	< 0.6 %	(Total ~0.45% without contigency)		

Relative Normalization: Analysis

- ✓ @Chooz: 1.5% syst. err.
 - 7 analysis cuts
 - Efficiency ~70%
- ✓ Goal Double-Chooz: ~0.3% syst. err.
 2 to 3 analysis cuts
- ✓ Selection cuts
 - neutron energy
 - (- distance e+ n) [level of accidentals]
 - ∆t (e+ n)

Th. Lasserre 07/02/2007

Backgrounds

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Detector	Site		Background				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Accid	Accidental		Correlated	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Materials	\mathbf{PMTs}	Fast n	μ -Capture	⁹ Li
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CHOOZ		Rate (d^{-1})					0.6 ± 0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(24 \ \nu/d)$		Rate (d^{-1})	0.42 ± 0.05		$1.01 \pm 0.04(stat) \pm 0.1(sys)$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Far	${ m bkg}/ u$	1.6%		4%		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Systematics	0.2%		0.4%		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Double Chooz		Rate (d^{-1})	0.5 ± 0.3	1.5 ± 0.8	0.2 ± 0.2	< 0.1	1.4 ± 0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(69 \ \nu/d)$	Far	${ m bkg}/ u$	0.7%	2.2%	0.2%	$<\!0.1\%$	1.4%
Double Chooz Rate (d^{-1}) 5 ± 3 17 ± 9 1.3 ± 1.3 0.4 9 $(1012 \ \nu/d)$ Near bkg/ ν 0.5% 1.7% 0.13% $<0.1\%$ Systematics $<0.1\%$ $<0.1\%$ $<0.1\%$ $<0.1\%$ $<0.1\%$			Systematics	$<\!0.1\%$	< 0.1%	0.2%	< 0.1%	0.7%
(1012 ν /d) Near bkg/ ν 0.5% 1.7% 0.13% <0.1% Systematics <0.1% <0.1% 0.2% <0.1% 0	Double Chooz		Rate (d^{-1})	5 ± 3	17 ± 9	1.3 ± 1.3	0.4	9 ± 5
Systematics $< 0.1\%$ $< 0.1\%$ 0.2% $< 0.1\%$	$(1012 \ \nu/d)$	Near	${ m bkg}/ u$	0.5%	1.7%	0.13%	< 0.1%	1%
	· · ·		Systematics	< 0.1%	< 0.1%	0.2%	$<\!0.1\%$	0.2%

hep-ex/0606025

Th. Lasserre 07/02/2007

10

2004-2006: Publications

Letter of Intent for Double-CHOOZ: a search for the mixing angle θ_{13}

APC, Paris - RAS, Moscow - DAPNIA, Saclay - EKU-Tö INFN, Assergi & Milano - INR, Moscow - MPI, Heidelberg - RF TUM-München - University of l'Aquila -Universität

B. Reinhold⁴ D. Revno² S. Schoenert¹⁶ U. Schwan¹⁶ Version 5.0 D. Underwood³ W. Winter²¹; K. Zbiri²¹ April 28, 2004 20th June 2006 i de mesure. Dés 2000, et pour plusieurs années, cette l'écutiennent activement ce aura lieu à l'autonne 2000, en **EU Lette** Proposal hep-ex/0606025 hep-ex ie 2007

Th. L.

2007

Lancement de l'expérience « Double Choos »

Lancement oe estevance formed formed formed for the CEADApria i estevance formed forme

Deux détecteurs identiques (Ardennes), à des distances seront mesurer avec précision la dernière propriété la dernière propriété

nesl, a cles ravec précision la dernière propriété,

l'oscillation

Les neutrinos sont des Particules élémet planéte : au plus un des Particules élémet propriété d'unioue sois types afrécentes e propriété d'unioue sois anti-unione e

SOMMUNIQUE DE PRESSE

Double Chooz: A Search for the Neutrino Mixing Angle θ_{13}

Barabanov¹⁰

sukov¹¹

B. Bugg²³ J. Busenitz² A. Cabrural SAUX 10 M. Cernda⁵ B. Chevis²³ .,21 B. Courty⁴ A. Cuccanes S. Dazeky¹⁵ A. Di Vacri⁷ M. Edlot²¹ C. Fermández-Bedovač T. Gabriel³³ P. Ghishin⁴ M. Goeger-Neff²² M. Goodman A. Guertin²¹ P. Guillouet⁴ Guarino³ T. Handler²³ F. X. Hartmann¹⁶ $(mbox^{22})$ J. Jochum²⁴ Y. Kamyshkov³³ Kerret⁴ T. Kirchner³¹ V. Kopeikin¹³ T. Kutter³⁵ Yu. S. Krylov¹¹ D. Kryté T. Losserre^{4,39} C. Lendvai²² and - Y. Lin² D. Lhuillier¹⁹ M. Lindner²² J. LoSecco¹⁸ darie¹⁹ J. Martino²¹ D. McKee² R. McNeil¹³ G. Mention¹⁹ W. Metcall⁹⁵ - L. Mikoelvon¹³ D. Motta¹⁰ J. P. Meyer¹⁰ L. Obernuer²² C. Palomares³ P. Perrin³⁹ W. Potzel²² M. Rolinec²² T. Schweitz²¹ M. Skorokhystov¹¹ A. Stahl¹ I. Stancu² S. Sukhotin^{4,12} R. Svoboda^{14,15} A. Tang¹² F.J. Valdivia⁵ D. Vignaud⁴ R. Zimmermonn⁴

J. C. Borrière¹⁹

A. Bernstein³⁴

F. Boillel¹

T. Bolton¹²

Conclusions & outlook

Funding has been established in Europe
 → Request in Japan and US

First goal: measurement of θ₁₃

Double Chooz moving towards the construction phase !

- 2007-08 → Detector construction & integration
- 2008 \rightarrow Start of phase I : Far 1 km detector alone sin²(2 θ_{13}) < 0.06 in 1,5 year (90% C.L.)
- 2009 → Start of phase II : Both near and far detectors sin²(2θ₁₃) < 0.025 in 3 years (90% C.L.) Complementarity with Superbeam experiments: T2K, Nova

Faisability study on non proliferation

Reactor v's track the Pu isotopic content of reactors → new beta spectra measurement & small detector deployed close to nuclear cores

- 2009-10 - Near detector at 280 m = prototyping of a futur AIEA monitor?

Daya Bay (hep-ex/0701029)

In Daya Bay, China

- 4 cores 2 sites 11.6 GWth
 - \Rightarrow 6 cores in 2011- with 17.4 GWth
- 2 near positions, (1 mid), 1 far
- far: 4 modules of 20 t
- near: 2 modules of 20 t each
- Civil Engineering
- ~ 3.4 km tunnels
- 5 laboratories to be build
- Statistics (including ε)
- far: 70 evt/day/mod
- mid-site: 200 evts/day/mod
- near: 600 evts/day/mod
- Mobile modules \Rightarrow swapping (Theo.)
- Systematics
- reactors : ~ 0.1% detectors : ~ 0.38%
- Backgrounds
- B/S @ near sites: ~0.5% @ far site: ~0.2%
- Sensitivity goal & Planning
- 1. Fast Measurement (Phase I)
 - DYB+Mid-site, 2008-2009
- Sensitivity (1 year) ~ 0.035
- 2. Complete measurement
 - DYB+LA+Far, from 2010
 - Sensitivity (3 years) < <u>0.008</u>

$RE_{3}NO$

RENO (http://neutrino.snu.ac.kr/RENO)

In South Corea Yongwang,

- 6 cores 1 site 16.4 GW_{th}
- 1 near site, 1 far,
- 3 "very near" sites
- target: 2 x 20 t
- + target: 3 x ~ 200-300 kg
- Civil Engineering
- ~ 700 m tunnels
- 2 laboratories to be build
- Statistics (including ε)
- Far: ~ 70 evts/day
- Near: ~ 1,700 evts/day
- Systematics
- total: ~ 0.5-1%
- Overburden
- Far: ~ 700 mwe
- Near: ~ 240 mwe
- Sensitivity & Planning
- Start construction in 2007
- Sensitivity: ~ <u>0.02</u>

Unified Analysis of current projects (G. Mention & T.L.)

Experimental context

3σ discovery potential

3σ sensitivity (no signal)

Lindner et al. (Globes 2006)

Th. Lasserre 07/02/2007

